
Eksploatacja i NiEzawodNosc – MaiNtENaNcE aNd REliability Vol. 23, No. 2, 2021 253

(*) Corresponding author.
E-mail addresses:

Eksploatacja i Niezawodnosc – Maintenance and Reliability
Volume 23 (2021), Issue 2

journal homepage: http://www.ein.org.pl

Indexed by:

Acronyms and Abbreviations
CCF      Common cause failure
DFT      Dynamic fault tree
DEN      Dynamic evidence network
DIF      Diagnostic Importance Factor
BIM      Birnbaum Importance Measure 
RAW      Risk Achievement Worth
PAND    Priority AND gate
DBN    Dynamic Bayesian network
FIM      Fisher information matrix
EFI       Effective independence method
MGL     Multi Greek Letter
MESH    Multiple error shock model
DTBN    Discrete-time Bayesian network
FTA      Fault tree analysis
BPA      Basic probability assignment

Effective sensor placement based on a VIKOR method considering  
common cause failure in the presence of epistemic uncertainty
Rong-Xing Duana*, Jie-Jun Hea, Tao Fenga, Shu-Juan Huanga, Li Chena

aSchool of Information Engineering, Nanchang University, Nanchang, 330031, P. R. China

Duan R-X, He J-J, Feng T, Huang S-J, Chen L. Effective sensor placement based on a VIKOR method considering common cause fa-
ilure in the presence of epistemic uncertainty. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23 (2): 253–262,  
http://doi.org/10.17531/ein.2021.2.5.

Article citation info:

Owing to expensive cost and restricted structure, limited sensors are allowed to install in 
modern systems to monitor the working state, which can improve their availability. There-
fore, an effective sensor placement method is presented based on a VIKOR algorithm con-
sidering common cause failure (CCF) under epistemic uncertainty in this paper. Specifically, 
a dynamic fault tree (DFT) is developed to build a fault model to simulate dynamic fault 
behaviors and some reliability indices are calculated using a dynamic evidence network 
(DEN). Furthermore, a VIKOR method is proposed to choose the possible sensor locations 
based on these indices. Besides, a sensor model is introduced by using a priority AND gate 
(PAND) to describe the failure sequence between a sensor and a component. All placement 
schemes can be enumerated when the number of sensors is given, and the largest system 
reliability is the best alternative among the placement schemes. Finally, a case study shows 
that CCF has some influence on sensor placement and cannot be neglected in the reliability-
based sensor placement.
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Notations

iP (x)       Lower bound of the failure probability of a component i

iP (x)       Upper bound of the failure probability of a component i
λI         Independent failure rate
λc         Common failure rate
β          Proportion of the probability of CCF in the total failure  
 probability
Pind           Probability of independent failure
Pccf        Probability of CCF
Pij         Proportion of the ith alternative on the jth attribute
hj          Entropy value of the jth attribute
ωj         Weight value of the jth attribute
Cj

+        Maximum range of each attribute
Cj

-         Minimum range of each attribute 
cij         The jth attribute value of the ith component
cj

+        Positive ideal solution
cj

-         Negative ideal solution
Si          Group benefit value
Ri         Individual regret degree
Qi         Compromise value
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1. Introduction
Driven by the support from modern technology, industrial produc-

tion systems are seeing more synthesized and intelligent mechanical 
equipment. Predictably, the equipment is characterized by high risk, 
long cycle and expensive cost, which has more rigorous standards on 
diagnosis and maintenance. Therefore, it is particularly essential to 
avoid failures or locate the fault promptly when failures occur. Sensors 
are added to monitor the important components in the system, which 
not only provide early warning information to avoid major economic 
losses but also improve the efficiency of diagnosis when a fault occurs. 
The failure of the sensor to respond accurately matters much to the 
entire life of the sensor, which will escalate the difficulty of opera-
tion of the related equipment and make it delicate to satisfy specific 
environmental requirements. Under the assumption that the sensor will 
not fail, a sensor monitoring model constructed by static logic gates is 
given, and the sensor is added outside the structure of a fault tree [2]. 
Obviously, this model is no longer in step with the reality. The addition 
of sensors is bound to affect the reliability of the monitored system. To 
improve this, sensors are directly positioned on the monitored compo-
nents in the concept of information fusion method [8], in effect diag-
nosing system fault using DFT analysis and DEN. However, the thorny 
problem of epistemic uncertainty remains unsolved and this approach 
has no access to consider that the addition of sensors will impact the 
system reliability. In reference [28], The sensor is taken as a component 
added in this system. A logic AND gate is adopted to describe the rela-
tionship between the component failure and sensor failure. When both 
failures occur, a failure will be output. However, this sensor monitor-
ing model is not only easy to cause false alarms and increase the fre-
quency of system maintenance unnecessarily, but also ignores missed 
alarms caused by the sequence of sensor failures and component fail-
ures. Hence, proposed by references [7, 11, 27], PAND gates are used 
to describe the time sequence between sensor failures and component 
failures. The Monte Carlo simulation and dynamic Bayesian network 
(DBN) are adopted to analyze DFT, which can effectively solve the 
above problems. Nevertheless, static fault tree is used to build the fault 
model and fails to describe the dynamic fault behaviors.

In the monitoring process of system status, the acquisition of sys-
tem status dramatically depends on the effective sensor placement. The 
placement of sensors affects the monitoring capability of the sensor 
and the performance of the system. The location, type and quantity of 
sensors are major indices that determine the functionality, cost advan-
tage and effectivity of sensor networks [28]. To assess the effectiveness 
of the sensor configurations, similarity of sensor locations and sensor 
distribution are usually taken into account [36]. The main goal of ef-
fective sensor placement is to select a set of sensor locations from a 
larger candidate set based on some available criteria. The Fisher infor-
mation matrix (FIM) is used to give the solution of sensor placement 
for on-orbit modal identification and correlation of large space struc-
tures [15]. At the heart of FIM is to start from all possible monitoring 
positions, calculate the information matrix of each position and select 
the information matrix with the largest trace as the final position of the 
sensor. For this purpose, an optimal sensor placement is performed us-
ing the FIM [12]. On the other hand, an effective independence method 
(EFI) for optimal sensor placement is developed by using the FIM by 
Kammer [16]. Subsequently, the EFI method gains the growing pop-
ularity in the aspect of the best sensor placement [3, 5]. To achieve 
the goal of maximizing the effective information matrix determinant, 
a novel optimization of sensor placement is proposed using random 
EFI in reference [18]. The information matrix-based sensor placement 
method usually needs to decompose the eigenvalue of the matrix and 
calculate the inverse of the matrix. The calculation process is com-
plicated and inefficient. Considering that the reduction of the modal 
assurance criterion has access to fewer iteration in sensor placement, 
a new multi-dimensional sensor placement criterion is presented by 
Yi [38] and a distributed wolf algorithm in the context of the paper is 
introduced to improve computational efficiency. Aiming at the defects 

of low modal energy and long calculation time of the modal matrix, a 
new modal shape matrix, established by He et al.[14], can overcome 
the above limitations. In reference [24], the locations of sensors are 
selected by minimizing information entropy, which is suited to assess 
the feasibility of sensor placement schemes in different forms. An op-
timization method based on information entropy, developed by Chow 
et al.[4], determines the sensor position of a typical power transmis-
sion tower with the updated structural model. Model-based optimiza-
tion rules that consider diagnosable and cost constraints are another 
commonly used optimization method. Under certain condition of the 
known number of sensors, Duan [9] sets the objective function of the 
optimal sensor placement as the minimum expected diagnostic cost 
to resolve the sensor placement by the expected diagnostic cost, but 
ignoring sensor reliability. Xie et al.[35] presents an optimization strat-
egy of the sensor placement, seeking the effective sensor placement by 
minimizing the average coherence while meeting budget constraints. 
Based on a hybrid model and data-driven method, a more effective and 
lower cost diagnosis and placement scheme in the system is presented 
by Zhang et al.[41]. It can quickly detect and locate the leakage area 
of the water-supply system. Steffelbauer et al.[33] incorporates differ-
ent types and sources of uncertainty into the leak location of optimal 
sensor placement. For different numbers of sensors, the uncertainty of 
different intensities is considered. In addition, in order to depict the 
relationship between the number of sensors and the quality of leak lo-
cation, a cost-benefit function is introduced using the different sensor 
placement results and GoF statistics. Generally, these methods are only 
suitable to specific systems. In fact, optimization algorithm is an issue 
that should be taken seriously during the process of optimizing sen-
sor placement. Non-linear programming [31] is also widely used op-
timization method, but it is tempting to get a locally optimal solution. 
Targeting the above flaws cited, some optimization algorithms, such 
as genetic algorithms [37] and hybrid firefly algorithm with particle 
swarm optimization [25], are gaining the growing popularity in the do-
main of sensor placement. Arguably, the construction of a sensor model 
should be emphasized, a noteworthy problem in sensor placement. In 
reference [27], from the perspective of system fault diagnosis, a PAND 
gate is used to establish the sensor model and importance parameters 
of components are calculated to determine the potential sensor loca-
tions. Finally, the scheme with the least probability of system failure is 
the best sensor placement scheme. The above methods are essentially 
based on single-attribute decision-making, and the decision-making 
ability is not enough precise. For the placed object, the reliable and 
precise placement can be made by comprehensively considering multi-
dimensional information. For this reason, in reference [28], a combina-
tion criterion based on the sensor failure risk and uncertainty of sensor 
information is developed to determine the effective placement of sen-
sors, providing decision support for system health monitoring. 

For the purpose of high reliability, some redundancy techniques 
are used in complex systems and make CCF exist when these systems 
break down. For the CCF problem, many scholars at home and abroad 
have established multiple CCF models, including the α-factor model 
[21], the β-factor model [17], the Multi Greek Letter (MGL) model 
[20] and the multiple error shock model (MESH) [19]. In reference 
[32], under the premise of considering CCF, a discrete-time Baye-
sian network (DTBN) is proposed to analyze the system reliability. 
Interval number theory is used for epistemic uncertainty and Matlab 
software is applied to calculate the reliability parameter. The β-factor 
model is built to handle the CCF problems, which converts static logic 
gates into DTBNs for analysis. Aiming at the epistemic uncertainty, 
a new sensor placement is proposed by using a DEN in reference [7], 
ignoring the CCF problem caused by simultaneous failure of blades 
and partitions in steam turbines due to high temperatures. In reference 
[44], an evidence network model is proposed to deal with the uncer-
tainty of modal parameters and CCF. On this basis, the concept of 
multi-common cause failure and processing method is proposed [23]. 

According to the research of sensor placement mentioned above, 
most methods neglect CCF, epistemic uncertainty or dynamic fault 
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behaviors. Additionally, a single indicator is used to choose the pos-
sible sensor locations, which will affect the effectiveness of sensor 
placement. This paper proposes a new effective sensor placement 
method to improve the effectiveness of sensor placement based upon 
the reliability criterion considering CCF problem and epistemic un-
certainty shown as Fig. 1. A DFT is utilized to develop a fault model 
to simulate the dynamic fault behaviors. Besides, some reliability 
indices are calculated by mapping a DFT into a DEN, which can ef-
fectively handle CCF and solve the DFT with interval failure rate of 
components. Furthermore, a VIKOR-based method for determining 
the potential locations of the sensors is proposed based on multiple 
reliability parameters. Additionally, a sensor model is presented by 
using a priority AND gate (PAND) to describe the failure sequence 
between a sensor and a component. Finally, all placement schemes 
can be enumerated when the number of sensors is given, and the larg-
est system reliability is the best alternative. 

The remainder of this paper continues as follows. Section 2 fo-
cuses on the model construction of complex systems and solution 
for DFT considering CCF and epistemic uncertainty. An effective 
VIKOR method is developed to choose the possible sensor positions 
in section 3. Section 4 proposes a new sensor model to consider the 
failure sequence between components and sensors. The optimization 
of sensor placement is also proposed based on the optimal reliability 
criterion in Section 4. In Section 5, an ATP system is given to evaluate 
the effectiveness of the proposed method. Finally, some conclusions 
are made in Section 6.

Fig. 1. Effective sensor placement method based on a VIKOR algorithm 
considering common cause failure in the presence of epistemic un-
certainty

2. Reliability analysis based on DEN considering CCF

2.1. Construction of DFT Model 
A fault tree [10] is a logical causal diagram representing the inter-

actions between the components in a system when a failure occurs. In 
the fault tree, a series of specific logic gate symbols and transferring 
symbols are generally used to describe the causal relationship between 
various fault events and normal events in the system. Quantitative 
reliability and safety analysis are responsible for the growing accept-
ance of the fault tree analysis (FTA) [13]. The analysis is introduced 

to calculate the occurrence probability of the top event and recognize 
some important events in order to improve the system reliability. The 
traditionally static fault tree mostly includes some static logic gates. 
It is far from easy for the traditional static fault tree to describe the 
dynamic fault behaviors. In order to address this problem, the concept 
of DFT is developed by adding some dynamic logic gates based on the 
traditional fault tree approach. These dynamic logic gates generally 
include functional dependency gate, priority gate, sequential gate and 
spare gate. DFT can describe dynamic failure behaviors and are suited 
to evaluate the reliability of complex systems. In this paper, interval 
numbers are used to describe the failure rates of components based 
upon some datasheet over the period of product design.

2.2. Solution for DFT based on DEN under epistemic uncer-
tainty

2.2.1. DEN
For two-state systems, all events only have two states: “occur” 

(F) and “not occur” (W). Accordingly, the knowledge framework of 
a component is Θ ={F, W} in evidence theory [6, 30], and all focal 
elements are defined as follows:

 2Θ = ∅{ ,{ },{ },{ , }}F W F Wi i i i  (1)

where {Fi} and {Wi} respectively represent the fault state and normal 
state of a component or system, and {Fi ,Wi } represents the epistemic 
uncertainty. 

Belief Function (Bel) represents the lower bound of the probability 
that the focus element exists, and Plausibility Function (Pl) represents 
the upper bound of the probability that the focus element exists. Ac-
cordingly, the basic probability assignment (BPA) of a component i is 
calculated as follows:
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Evidence network, a widely used uncertainty reasoning method, 
has the advantages of D-S evidence theory and Bayesian network. 
It can more effectively solve the uncertainty problem of complex 
systems. DEN, an extension of initial evidence network in time, is a 
graphic structure and includes the original initial network and the time 
transfer network, where each time segment corresponds to a static evi-
dence network. Each time segment is composed of a directed acyclic 
graph GT=<VT, ET> and conditional probabilities, where VT and ET are 
represented as node sets and directed edge sets of time T respectively. 
Each time segment is connected by directed edges which are called 
transfer networks. In DEN, the state of the current time segment T 
depends only on the current state and the previous time segment T-∆T, 
and has no relation with other states. The state of the current time seg-
ment T should meet the following requirements:
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However, the conditional belief distribution for the current focal 
element X with time k and the next focal element X with time k+1 
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2.2.2. Conversion of DFT into DEN
Static logic gates are majorly composed of AND gate, OR gate, 

and voting gate. The AND gate and PAND gate are applied to dem-
onstrate the conversion of DFT into DEN in the following section. 
A logic AND gate outputs if any input event fails among the logical 
AND gate. A logic AND gate and the corresponding DEN are given 
in Fig. 2. The conditional probability table of node B(T+∆T) in DEN 
is shown in Table 1 [22]. Formula (5) can be obtained from formula 
(2), showing the BPA of node B, and the conditional mass distribution 
formula of node C(T+∆T) is given by formula (6). 

Fig. 2. A logic AND gate and the equivalent DEN

 

m W T
m F T

m F W T T

B

B

B

( ) ( )
( ) ( )

( , ) ( ) (

= ⋅
= − ⋅

= ⋅ − ⋅

exp
exp

exp exp

λ
λ

λ λ

∆
∆

∆ ∆

1

))









 (5)

P C T T F A T T F B T T F
P C T T F else

( ( ) { } | ( ) { }, ( ) { }) 1
( ( ) { } |

+ = + = + = =
+ =
∆ ∆ ∆
∆ ))

( ( ) { , } | ( ) { }, ( ) { , })
( ( )

=
+ = + = + = =
+ =

0
1P C T T F W A T T W B T T F W

P C T T
∆ ∆ ∆
∆ {{ , } | ( ) { , }, ( ) { })

( ( ) { , } | ( )
F W A T T F W B T T F

P C T T F W A T T
+ = + = =

+ = +
∆ ∆

∆ ∆
1

== + = =
+ = =
















{ , }, ( ) { , })
( ( ) { , } | )

F W B T T F W
P C T T F W else

∆
∆

1
0

(6)

The model of the PAND gate in the DEN is given in Fig. 3. The 
conditional probability table of node A(T+∆T) is shown in Table 1. By 
using equations (7) and (8), the conditional probability formulas of 
the node E(T+∆T) and C(T+∆T) are obtained.

Fig. 3. A PAND gate and the equivalent DEN
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2.3. DEN model considering CCF
Redundant structure is usually used in complex systems to im-

prove their performance. It is common that correlated failures often 
cause these systems to break down. If these correlated failures are 
ignored, it will lead to a big deviation in the reliability evaluation. 
CCF, one of the most common correlated failures, attracts more atten-
tion nowadays, and many researchers focus on this topic. CCF [43] 
is the simultaneous failure of two or more components due to some 
common causes. Explicit and implicit modeling methods are usually 
implemented to solve the CCF problem in reliability analysis [39]. 
The key to modeling a CCF system using DEN model is to make 
the component with CCF equivalent to an independent failure sub-
component and a CCF sub-component, that is, the failure rate of CCF 
components in the system is divided into independent failure rate λI 
and CCF failure rate λc. The logical structure of the independent fail-
ure sub-component and the CCF sub-component is in series, and the 
common cause component failure occurs when any sub-component 
fails. Accordingly, in the DEN, the common cause event is regarded 
as the basic event of the system, that is to add a layer of independent 
failure sub-nodes and CCF sub-nodes on the basis of the root node, 
determine the edge probability of each sub-node, derive the condi-
tional probability between each failure sub-node and components, and 
then construct the DEN model considering CCF. This paper adopts a 
β factor model to deal with CCF in the DEN. A network node without 
time change is added in the DEN, and its initial state is determined by 
the β factor value, as shown in Fig. 4.

Fig. 4. An explicit modeling of AND gate considering CCF in the DEN

Generally, the parameter β can be defined as the proportion of the 
probability of CCF in the total failure probability. If a component 

Table 1. The conditional mass distribution tables of node B(T+∆T)

B(T)
B(T+∆T)

{W} {F} {W, F}

{W} mB(W) mB(F) mB(W, F)

{F} 0 1 0

{W, F} 0 mB(F) 1− mB(F)
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obeys the exponential distribution, and the independent failure 
rate and the β-factor value are given, common failure rate can 
be calculated by the following equation.

 β
λ

λ

λ

λ λ= =
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1 1
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where λI is the independent failure rate of the component; λc is 
the CCF rate; λs is the whole failure rate of the component. 

When the independent failure rate of the component is ex-
pressed by an interval number [ , ]λ λI I , the interval CCF rate 
[ , ]λ λc c  of components can be obtained according to the fol-
lowing formula:
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The value of β usually range from 0 to 0.25. Actual components 
and the corresponding CCF influence should be considered to deter-
mine the specific value of β. 

2.4. Calculating reliability results
Once the DFT model of a system is constructed, DFT is converted 

into the corresponding DEN based on the above approach. Some in-
ference algorithms for DEN are applied to calculate some reliability 
indices. Three reliability parameters of DIF, BIM and RAW can be 
employed to quantify the influence of component on system reli-
ability. However, each parameter has its unique characteristics. DIF 
[29] can describe the contribution of component failure to system 
failure. BIM [26] is defined as the influence of a failed component 
on the system and it has nothing to do with the reliability of the 
component, and only depends on the reliability of other components 
and the structure of the system. In general, RAW [40] is defined as 
the ratio of the risk metric value obtained when a component fails at 
the base case value of the risk metric. It is used to estimate the risk 
achievement of the system failure caused by a component failure 
and represents the significance of keeping a component at the cur-
rent level of reliability.

3. Determining the possible sensor positions based on 
a VIKOR algorithm

This section proposes a method to determine the potential positions 
of sensors using VIKOR-based method under epistemic uncertainty 
[1]. The specific flow chart is shown in Fig. 5.

3.1. Constructing the decision matrix
The evaluation object is a component in the system in the 

process of selecting potential locations. Then, each compo-
nent represents an evaluation scheme, which is shown by set  
C = {C1, C2, … , Cm}. The reliability parameter of a component 
can be used as an evaluation attribute (evaluation indicator), which 
is represented by set v = {v1, v2, …, vn}. The weight vector of is  
ω={ω1, ω2, … ωn}, where ωj is the corresponding weight value of 
the evaluation attribute vj. An original decision matrix composed of 
m evaluation schemes and n evaluation attributes can be expressed by 
the following formula:

 C c

c c c
c c c

c c c
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m m mn
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1 2
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3.2. Calculating the weights of attributes using an entropy 
weight approach

Step 1. Standardize the decision matrix to tackle the homogeniza-
tion of attributes’ values. The negative and positive indexes can be 
calculated by the following equations:

 c
c c

c cij
ij j

j j

' ( )
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min
max min

 (13)
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where min(cj) and max(cj) are the minimum and maximum value of 
the jth index respectively.

Step 2. Calculate Pij using the following equation:

 P
c

c
ij

ij

ij
i

m=

=
∑

'

'
1

 (15)

where Pij is the proportion of the ith alternative on the jth attribute.

Step 3. Entropy values of attributes can be obtained as follows:

 e K p pj ij ij
i

m
= −

=
∑ ln

1
 (16)

where 1 / lnK m= , (K > 0 ,0≤Pij).

Step 4. Weight values of attributes can be calculated by the follow-
ing equation:

 ω j
j

j
j

n
e

e
=

−

=
∑

1

1

 (17)

Fig. 5. A VIKOR-based method for determining the potential locations of sensors under 
epistemic uncertainty

(10)
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Using the above four steps, the weight matrix ω={ω1, ω2, … ωn} of 
attributes can be obtained, and ω satisfies the following formula 

ω j
j

n

=
∑ =

1
1 , 0 ≤ωj≤ 1.

3.3. Determining the possible locations of sensors using a 
VIKOR method

The steps of determining the possible locations of sensors are given 
as follows based on the VIKOR algorithm.

Step  1.  Construct the decision matrix C = (cij)m×n, where  
cij = [cij

-, cij
+] is the jth attribute value of the ith component in the sys-

tem. The specific process is shown in formula (12). 

Step 2. Determine the range of each attribute value:
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Step 3. For the attributes described in interval numbers, the follow-
ing two formulas can be used to calculate the positive ideal solution 
cj

+ and negative ideal solution cj
- of the attribute respectively:
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(20)
Step 4. Original decision matrix C can be normalized based on the 

Hamming distance, and the normalized decision matrix B = (bij)m×n is 
calculated by using the following equation:

 b
c c c c

C Cij
j ij j ij

j j
=

− + −

−

+ − + +

+ −2( )
 (21)

Step 5. Apply formula (17) to get the weight matrix ω={ω1, 
ω2,  … ωj… ωn}, where ω1+ ω2+  ⋯ ωn=1, ωj∈[0,1].

Step 6. Calculate the group benefit value Si, the individual regret 
degree Ri and the compromise value Qi:
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where S+ and S− are the maximum and minimum values of group ben-
efit Si respectively; R+ and R− are the maximum and minimum values 

of individual regret Ri respectively. v is a constant. This paper assumes 
v=0.5, which means that maximizing group benefits is worthwhile 
minimizing group individual regret. The compromise value Qi is sort-
ed in ascending order. An equivalent number of system components 
or nodes with ranking among the top in Qi are selected as the possible 
locations of sensors in light of the number of sensors. 

4. Sensor placement method using reliability criterion

4.1. Sensor model 
Some sensors are installed to monitor the operation state of some 

components in modern systems. When the value detected by a sensor 
is above the threshold, the sensor will give the alarm to the main-
tenance staff to repair or replace the component. Nevertheless, if a 
component fails after a sensor, and the monitored value is above the 
threshold, an alarm is not activated by this sensor until the component 
fails. In the following section, the temporal and logic relation will be 
described by using a new sensor model.

The output failure situation of the sensor monitoring model con-
structed in this paper has the following three situations.

If the sensor does not fail before the monitored component fails, (1) 
the sensor can monitor the state of component normally, and find 
the abnormal component in time to maintain or replace it. At this 
time, the entire model is considered normal.
If the monitored component fails after the sensor fails, the sen-(2) 
sor loses its function. At this time, the normality or failure of the 
entire model is determined by the working status of the detected 
component.
The entire model is considered as a failure when the sensor and (3) 
the monitored component fail at the same time.

A sensor is thought of as a component in a system in light of con-
sidering the reliability of this sensor. This paper uses the PAND gate 
to construct a sensor monitoring model based on the above discus-
sion. This sequential failure can be captured by using a PAND gate, 
as shown in Fig. 6.

4.2. Determining the optimal sensor placement scheme
Given the restrictions of structure and economic cost, only several 

sensors are allowed to be installed in some important locations. Let us 
suppose that the number of sensors is given. Usually, the number of 
locations detected is greater than the number of sensors. In this paper, 
there are M sensors installed in the system and N possible locations 
monitored by sensors (M < N), all possible placement schemes can be 
obtained using the following equation:

 C N M N
M N M

( , ) !
!( )!

=
−  (25)

Fig. 6. A PAND gate to model the logic relation between a component and a 
sensor
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For example, if there are only three allowed 
sensors to be placed in the system, X1, X2, 
X3 and X4 at the top of components, can be 
selected as the potential monitored positions of 
the sensors based on the described method for 
determining the potential position of the sen-
sor. Assuming that there are four specific types 
of sensors S1, S2, S3 and S4 corresponding to 
four components, system will have the follow-
ing four candidate placement schemes.

Scenario 1: Mount sensor S1 on component X1, 
mount sensor S2 on component X2, and mount 
sensor S3 on component X3.

Scenario 2: Mount sensor S1 on component X1, 
mount sensor S2 on component X2, and mount 
sensor S4 on component X4.

Scenario 3: Mount sensor S1 on component X1, 
mount sensor S3 on component X3, and mount 
sensor S4 on component X4.

Scenario 4: Mount sensor S2 on component X2, 
mount sensor S3 on component X3, and mount 
sensor S4 on component X4.

According to the proposed method, all pos-
sible placement scenarios can be obtained. A 
PAND gate, used to model the time dependences, is added to each 
scenario and the system reliability is calculated by the analysis of 
the updated DFT using the DEN based method. The best placement 
scheme is the scenario in which the system reliability is the largest.

5. A case study
The CTCS-3 ATP system [42] is a critical subsystem to guarantee 

the stable operation of trains and realize ultra-high-speed protection. 
Analyzing the reliability of the ATP system, finding out the key com-
ponents or weak nodes of the system as potential installation locations 
of sensors, and optimizing the sensor placement scheme are of great 
significance to ensuring the safety of trains and reducing maintenance 
costs. The fault tree model of CTCS-3 ATP system is given in Fig. 7. 
Supposing that all components in the ATP system follow the exponen-
tial distribution and the failure rate of each component is expressed 
in the form of a definite value. In the presence of the epistemic un-
certainty, the failure rate of the component is described in the form of 
interval numbers, as shown in Table 2. 

To improve the reliability of ATP system, dual module redundant 
structure is used in the D1~D9 elements, and CCF exists in these 
modules. In this paper, a β-factor model is used to solve the problem 
of CCF. Under the condition that the independent failure rate λI of the 
component is given, and the interval failure rate [ , ]λ λI I  is obtained 
by formula [ , ] [0.8 ,1.2 ]λ λ λ λI I I I= . If β is known to be 10%, the CCF 
rate λc and interval CCF rate [ , ]λ λc c  can be obtained by formula (9), 
formula (10) and formula (11), as shown in Table 3.

The assumption is that the mission time T is 4000 hours and ∆T 
is 1000 hours. the DFT of ATP system can be converted into a DEN 
based on the approach mentioned above. In the two cases of consid-
ering CCF or not, the DEN is used to calculate DIF, BIM and RAW 
as the evaluation attributes. Two original decision matrices are given 
in Table 4 and Table 5. The entropy weight method determines the 
weight of each attribute as shown in Table 6. Table 7 shows the group 
benefit value S, individual regret R and the compromise value Q ob-
tained by the VIKOR algorithm. Since interval numbers cannot be 
directly compared, then, the interval number ranking approach based 
on NSG possibility degree [34] is used to calculate the corresponding 
ranking values of BIM in Table 4 and Table 5, as shown in Table 8.

Assuming that only two sensors are allowed to be placed in the 
system, three nodes are designated as the potential sensor positions 
by the formula (24). Regardless of whether the CCF is considered, it 

Table 2. Failure rates of all components in ATP system

Components Failure rate λI /h Interval failure rates [ , ]λ λc c /h

X1, X2 1.20e-5 [0.96e-5, 1.44e-5]

X3, X4 2.30e-6 [1.84e-6, 2.76e-6]

X5, X6 2.10e-5 [1.68e-5, 2.52e-5]

X7, X8 1.80e-5 [1.44e-5, 2.16e-5]

X9, X10 1.45e-8 [1.16e-8, 1.74e-8]

X11, X12 1.20e-5 [0.96e-5, 1.44e-5]

X13, X14 1.49e-5 [1.19e-5, 1.79e-5]

X15, X16 2.50e-9 [2.00e-9, 3.00e-9]

X17, X18 6.00e-6 [4.80e-6, 7.20e-6]

X19 2.00e-6 [1.60e-6, 3.20e-6]

X20 7.00e-8 [5.60e-8, 8.40e-8]

X21 5.00e-6 [4.00e-6, 6.00e-6]

Fig. 7. A simplified fault tree model of ATP system

Table 3. The interval CCF rates of all components in ATP system

Components CCF failure rate λc /h Interval CCF failure 
rate [ , ]λ λI I /h 

X1, X2 1.20e-5 [1.02e-6,1.50e-6]

X3, X4 2.30e-6 [2.03e-7,3.03e-7]

X5, X6 2.10e-5 [1.73e-6,2.51e-6]

X7, X8 1.80e-5 [1.50e-6,2.18e-6]

X9, X10 1.45e-8 [1.29e-9,1.93e-9]

X11, X12 1.20e-5 [1.02e-6,1.50e-6]

X13, X14 1.49e-5 [1.25e-6,1.84e-6]

X15, X16 2.50e-9 [2.22e-10,3.33e-10]

X17, X18 6.00e-6 [5.22e-7,7.75e-7]
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is painfully obvious that the compromise value Q of nodes D3, X19 
and X21 is smaller in Table 7; The BIM of nodes D3, X19 and X21 
correspond to larger ranking values are obtained in Table 8. Therefore, 
under the above conditions, these nodes are chosen as the possible po-
sitions of sensors in the ATP system. Suppose that sensors S1, S2 and 
S3 are specific types of sensors that monitor nodes X19, X21 and D3, 
respectively. The sensor monitoring model composed of PAND gates 
introduced in this paper is added to the system fault tree model, then 
all sensor placement schemes of the system are as follows.

Scheme 1:  Install sensor S1 on node X19 and install sensor S2 on 
node X21.

Scheme 2:  Install sensor S1 on node X19 and install sensor S3 on 
node D3.

Scheme 3:  Install sensor S2 on node X21 and install sensor S3 on 
node D3.

Table 9. Failure rate of sensors

Sensors Failure rate λI/h Interval failure rate [ , ]λ λI I /h

S1 4.05e-7 [3.24e-7, 4.86e-7]

S2 9.30e-7 [7.44e-7, 11.16e-7]

S3 4.20e-6 [3.36e-6, 5.04e-6]

Table 4. The original decision matrix ignoring CCF

Nodes DIF BIM RAW

D1 [0.0004, 0.0009] [0, 0.0123] [0.6714, 1.9919]

D2 [0, 0] [0, 0.0123] [0.6714, 1.9919]

D3 [0.0879, 0.0891] [0.9814, 0.9887] [47.6190, 80.6451]

D4 [0.0008, 0.0018] [0, 0.0094] [0.6095, 1.7581]

D5 [0, 0] [0, 0.0094] [0.6095, 1.7581]

D6 [0.0004, 0.0008] [0, 0.0094] [0.6095, 1.7581]

D7 [0.0006, 0.0013] [0, 0.0094] [0.6095, 1.7581]

D8 [0, 0] [0.9790, 0.9876] [47.6190, 80.6451]

D9 [0.0074, 0.0075] [0.9792, 0.9877] [47.6190, 80.6451]

X19 [0.2573, 0.2696] [0.9853, 0.9907] [47.6190, 80.6451]

X20 [0.0090, 0.0091] [0.9792, 0.9877] [47.6190, 80.6451]

X21 [0.6416, 0.6431] [0.9909, 0.9955] [47.6190, 80.6451]

The sensor, as a high-reliability component, is generally dozens of 
times lower than the failure rate of the monitored component. There-
fore, it can be reasonably assumed that the sensor failure rate is given 
in Table 9. For the interval failure rate of node (component), the fault 
tree model of ATP 

system can be mapped into the DEN to calculate the system reli-
ability under various scenarios, or, the normal probability of the sys-
tem at the end of the system task time. Table 10 gives the system 
reliability and its corresponding ranking values under various place-
ment schemes when failure rate of the node (component) is interval 
number. It can conclude that the optimal sensor placement scheme in 
the ATP system ignoring CCF is scenario 1 and the optimal placement 
scheme considering CCF is scenario 3 according to Table 10. Consid-
ering whether CCF or not, the optimal placement scheme is different. 

Table 6. The weight table of attributes

Weight Ignoring CCF Considering CCF

ωDIF 0.1931 0.1899

ωBIM 0.1931 0.1893

ωRAW 0.6138 0.6208

Table 10. The reliability of ATP system and the corresponding ranking value 
when failure rate is an interval value

Schemes System reliabil-
ity ignoring CCF

Ranking 
value

System reliability 
considering CCF

Ranking 
value

1 [0.9972, 0.9987] 0.5000 [0.9905, 0.9942] 0.3864

2 [0.9877, 0.9958] 0.2043 [0.9860, 0.9907] 0.1706

3 [0.9932, 0.9966] 0.2957 [0.9916, 0.9955] 0.4430

Table 8. The sort value corresponding to BIM

Nodes Ignoring 
CCF

Consider-
ing CCF Nodes Ignoring 

CCF
Consider-

ing CCF

D1 0.0596 0.0605 D7 0.0580 0.0576

D2 0.0596 0.0605 D8 0.1043 0.1040

D3 0.1064 0.1106 D9 0.1044 0.1054

D4 0.0580 0.0576 X19 0.1108 0.1092

D5 0.0580 0.0576 X20 0.1044 0.1041

D6 0.0580 0.0576 X21 0.1184 0.1156

Table 7. S, R and Q values of each node

Nodes
Ignoring CCF Considering CCF

S R Q S R Q

D1 0.8657 0.4817 0.9979 0.8616 0.4876 0.9920

D2 0.8659 0.4817 0.9980 0.8630 0.4876 0.9929

D3 0.1679 0.1663 0.2690 0.0821 0.0813 0.1299

D4 0.8670 0.4828 0.9998 0.8661 0.4916 0.9987

D5 0.8674 0.4828 1.0000 0.8683 0.4916 1.0000

D6 0.8672 0.4828 0.9999 0.8669 0.4916 0.9992

D7 0.8671 0.4828 0.9998 0.8665 0.4916 0.9990

D8 0.1948 0.1929 0.3120 0.6830 0.4916 0.8933

D9 0.1925 0.1906 0.3084 0.1641 0.1625 0.2597

X19 0.1148 0.1138 0.1840 0.1141 0.1132 0.1808

X20 0.1920 0.1901 0.3076 0.1887 0.1868 0.2987

X21 0 0 0 0 0 0

Table 5. The original decision matrix considering CCF

Nodes DIF BIM RAW

D1 [0.0037, 0.0051] [0, 0.0248] [0.9453, 2.4970]

D2 [0.0006, 0.0009] [0, 0.0248] [0.9453, 2.4970]

D3 [0.2691, 0.2711] [0.9798, 0.9876] [36.4964, 59.8802]

D4 [0.0044, 0.0067] [0, 0.0148] [0.7153, 1.9581]

D5 [0, 0] [0, 0.0148] [0.7153, 1.9581]

D6 [0.0028, 0.0042] [0, 0.0148] [0.7153, 1.9581]

D7 [0.0035, 0.0054] [0, 0.0148] [0.7153, 1.9581]

D8 [0, 0] [0.9726, 0.9831] [0.7153, 1.9581]

D9 [0.0672, 0.0678] [0.9743, 0.9842] [36.4964, 59.8802]

X19 [0.1893, 0.1918] [0.9788, 0.9863] [36.4964, 59.8802]

X20 [0.0066, 0.0067] [0.9727, 0.9832] [36.4964, 59.8802]

X21 [0.4720, 0.4741] [0.9843, 0.9910] [36.4964, 59.8802]
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Hence, conclusions can be made that CCF generates an incredibly 
important impact on sensor placement using reliability criterion and 
cannot be neglected in sensor placement analysis.

6. Conclusion
This paper proposes an effective sensor placement method based 

on the reliability criterion in the presence of epistemic uncertainty. It 
is designed to tackle two important challenges emerging in complex 
systems, for example, CCF in components and dynamic fault behav-
iors. Aiming at the problem of CCF, the β-factor model is adopted 
to address the CCF failure rate and independent failure rate of com-
ponents. For the issue of dynamic fault behaviors, a DFT is used to 
construct a fault model and the DFT is mapped into a DEN to com-
pute several reliability indices used as evaluation attributes to build 
a decision matrix. Additionally, the potential locations of sensors are 
obtained using an efficient VIKOR algorithm and a diagnostic sensor 
model is constructed based on a PAND gate to capture the sequence 

between sensor failures and the monitored component failures. Fur-
thermore, the best sensor placement scheme is obtained based on the 
system reliability among the placement schemes. Finally, an actual 
ATP system is given to evaluate the effectiveness of the proposed 
method. Some conclusions are made that CCF generates an incred-
ibly important impact on sensor placement using reliability criterion 
and cannot be neglected in sensor placement analysis. The proposed 
method makes full use of the advantages of DFT for modeling, DEN 
for solving the problem of epistemic uncertainty and a VIKOR algo-
rithm for decision making, which particularly is appropriate for effec-
tive sensor placement in complex engineering systems.
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